Refine Your Search

Topic

Author

Search Results

Technical Paper

Diesel Particulate Filters Made of Newly Developed SiC

2001-03-05
2001-01-0192
This paper presents the performance and durability test results of a newly developed diesel particulate filter (DPF) made of silicon carbide (SiC). While SiC offers thermal resistance that is superior to cordierite, it requires a complex, multi-segment bonded design structure due to the thermal expansion coefficient that is higher than cordierite, which leads to a higher thermal stress during regeneration. This company has developed a honeycomb slit-type DPF made from a newly developed SiC through the application of its own honeycomb forming technology and material technology, and has also succeeded in controlling the cost of the product through a simplified design.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

Prediction of Catalytic Performance for Ultra Thin Wall and High Cell Density Substrates

2000-03-06
2000-01-0494
New ultra-low vehicle emission legislation requires advanced catalyst systems to achieve high conversion requirements. Manufacturers have to improve both the washcoat formulations and the catalyst substrate technology to meet these new regulations. This paper will present the results of a computer modeling study on the effects of ultra-thinwall catalysts on hydrocarbon and carbon monoxide light-off performance improvement. The experimental data from catalyst light-off testing on an engine dynamometer are compared with theoretical results of advanced substrate modeling for ultra-thin wall ceramic substrates. Results show that thermal mass has the greatest effect on light-off performance. Decreases in wall thickness offer the greatest benefit to light-off performance by lowering the thermal mass of the substrate, thus allowing it to reach light-off temperature faster.
Technical Paper

High Cell Density and Thin Wall Substrate for Higher Conversion Ratio Catalyst

1999-03-01
1999-01-0268
Although air pollution has mitigated since the introduction of exhaust emission regulations, further reduction of it especially in the metropolitan areas is anticipated. An effective way to resolve this issue is to improve the catalyst performance. Of many approaches, improving substrate is one promising way to achieve this goal. Results of applying high cell density and light- weight substrates, coupled with high precious metal content, are discussed theoretically and verified experimentally here. The significant improvements made in the low temperature activity and warmed-up conversions by increasing geometrical surface areas and lowering thermal mass of high cell density substrates are described.
Technical Paper

Long Term Stable NOx Sensor with Integrated In-Connector Control Electronics

1999-03-01
1999-01-0202
This paper describes improvements achieved with regard to the long term stability and the system integrability of a previously described thick film NOx sensor for gasoline lean burn and diesel applications. (1, 2, 3) Durability test up to 1000 hours consisting of a temperature cycle have been carried out by a stoichiometric operating gasoline engine test bench. The NOx sensor demonstrates the NOx output shift in terms of the NOx sensitivity less than 5 % on a model gas apparatus and ± 7 % measuring accuracy in practical operating condition on a diesel engine after 1000 hours that is equivalent to approximately 60K miles driving. The integration of the control electronics for the sensor in its connector is achieved for the sensitive measuring current in the μA-range or less on vehicle applications. The developed electronics functions closed-loop controls for a tip temperature and oxygen pumps as well as a diagnosis of sensor malfunctions.
Technical Paper

In-line Hydrocarbon Adsorber for Cold Start Emissions - Part II

1998-02-23
980423
The in-line hydrocarbon (HC) adsorber is a passive after-treatment technology to address cold-start hydrocarbons in automotive engine exhaust gas. A major technical challenge of the in-line HC adsorber is the difference between the HC release temperature of the adsorber and the light-off temperature of the burn-off (BO) Catalyst. We call this phenomenon the “reversed-temperature difference”. To reduce the reversed temperature difference, NGK has proposed a new “In-line HC Adsorber System” which consists of light-off (LO) Catalyst + Barrel Zeolite Adsorber (BZA), with a hole through the center, BO Catalyst and secondary air injection management (SAE 970266). This, our latest paper, describes the evaluation of various adsorbents and the effect of the center hole on the Adsorber BZA. The adsorber system, which had the Adsorber BZA with a 25mm ϕ center hole and adsorbent coated, confirmed 30% lower FTP NMHC emission versus a system with no center hole or adsorbent coating.
Technical Paper

Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration

1998-02-01
980170
A practical ZrO2 NOx sensor using dual oxygen pumping cells has been introduced for the control of NOx emitted from a lean-burn gasoline engine and diesel engine.(1),(2). However, the measuring accuracy was not high enough to be useful for controlling or monitoring a low level of NOx concentration such as several tens ppm behind a three way catalyst or lean NOx catalyst which is NOx adsorption or De-NOx catalyst. This paper describes improvement of the interference effect of oxygen in the exhaust gas from the lean-burn gasoline engine and diesel engine. The cause of oxygen dependency is analyzed/revealed and a method of improvement is introduced. The improved NOx sensor has an approximately · · 2% measuring error in the wide range of oxygen concentration on a model gas system, compared to the · ·10% of the previous one.
Technical Paper

Performance of Thick Film NOx Sensor on Diesel and Gasoline Engines

1997-02-24
970858
This paper describes a thick film ZrO2 NOx sensor feasible for diesel and gasoline engine applications, and introduces modification items from the previous concept design.(1) The modification items comprise simplifying the sensing element design to reduce output terminals for package design and applying temperature control to the sensing element in order to minimize sensor performance dependency on gas temperature. The NOx sensor indicates a stable linear signal in proportion to NOx concentration in a wide range of temperature, A/F and NOx concentration as a practical condition on both gasoline and diesel engines. The NOx sensor shows a good response in hundred msec. and a sharp signal following NOx generation in a transient state as well. Besides, another type of a NOx sensor is proposed for low NOx measurement in a practical use, by an electromotive force(EMF) voltage instead of a pumping current.
Technical Paper

Advanced Ceramic Substrate: Catalytic Performance Improvement by High Geometric Surface Area and Low Heat Capacity

1997-02-24
971029
Catalytic performance can be improved by increasing geometric surface area (GSA) and reducing bulk density (BD), namely heat capacity, using high cell-density / thinwall advanced ceramic substrates. The advanced substrates, such as 3 mil/600 cpsi and 2 mil/900 cpsi have improved the catalytic performance over the conventional substrates, and are expected to help in complying with future emission regulations, as well as catalyst downsizing. This paper describes the effects of GSA and BD using Pd-based catalysts. The reduction of hydrocarbons emissions was demonstrated significantly at close-coupled location, and dual bed design was proven effective. The effectiveness at under-floor location was not as significant as the close-coupled location.
Technical Paper

Design Development of High Temperature Manifold Converter Using Thin Wall Ceramic Substrate

1997-02-24
971030
This paper proposes a high temperature manifold converter with a thin wall ceramic substrate, such as; 4mil/400cpsi and 4mil/600cpsi. Double-wall cone insulation design was proposed for close-coupled converters to protect the conventional intumescent mat from high temperature. However, the double wall cone insulation is not applicable when the converter is directly mounted to the exhaust manifold without an inlet cone. The prototype manifold converter was tested under hot vibration test with a non-intumescent ceramic fiber mat and retainer rings as a supplemental support. The converter demonstrated durability for 10 hours under 80G acceleration and 100 hours under 60G acceleration with 1,050 °C catalyst bed temperature. The skin temperature of the heat shield was kept below 400 °C.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Cold Start Emissions

1997-02-24
970266
In order to meet the strict automobile emission regulations in the U.S.A. and Europe, new aftertreatment technologies such as the EHC and HC Adsorber have been developed to reduce the cold start emissions. The EHC is obviously effective in reducing emissions, but has the demerits of a large electric power demand and a complicated power control system to support it (13). A by-pass type HC adsorber system has the concerns of unreliable by-pass valves and complicated plumbing (10). A major technical challenge of the in-line type HC adsorber was the difference between the HC desorption temperature and the light-off temperature of the burn-off catalyst. This paper describes the evaluation results of a completely passive “In-line HC Adsorber System” which can reduce the cold start emissions without the application of any type of mechanical or pneumatic control valve in the exhaust system.
Technical Paper

The Regeneration Efficiency Improvement of the Reverse Pulse Air Regenerating DPF System

1996-02-01
960127
This paper describes the system modification through the improvement of pulse air penetration into the DPF cell channels in respect to the development of a wall-flow type diesel particulate filter ( DPF ) system with reverse pulse air regeneration for diesel vehicles. In this system, regeneration becomes more difficult with low exhaust gas temperatures and increased DPF volume. The pressure increase in the DPF cell channels was monitored as a parameter of pulse air penetration when reverse pulse air was injected into the DPF. By maximizing the pressure increase, the pulse air injection system was modified. The modification includes various changes in the air pipe arrangement and the air injecting time. The ratio of the length to the diameter of the DPF was also evaluated in relation to the regeneration efficiency. In this study, the high aspect ratio, i.e. small diameter and long DPF, showed better regeneration efficiency.
Technical Paper

An Extruded Electrically Heated Catalyst: From Design Concept through Proven-Durability

1996-02-01
960340
The electrically-heated catalyst ( EHC ) has been established as an effective technology for lower-emission regulations. High electrical power consumption was a major concern for the EHC system in the past. This issue was addressed through the development of the EHC design and the alternator-powered EHC system combined with a light-off ( L/O ) catalyst. The subsequent challenges have been to prove the EHC's reliability and durability. NGK has developed a durable, extruded EHC for very severe exhaust system installations. In addition, the EHC's electrical connector system is required to meet high performance and reliability objectives under extreme environmental conditions unique to this application. This report describes the design concept of NGK's EHC including our new electrical connector system and durability results. In summary, the NGK EHC design concept has been confirmed to have excellent durability performance.
Technical Paper

Exhaust Gas Temperature Sensor for OBD-II Catalyst Monitoring

1996-02-01
960333
This paper describes a newly-developed, high-performance RTD,(Resistive Temperature detector), which meets OBD-II monitoring requirements. The OBD-II catalyst monitoring requirements are high temperature durability, high accuracy, and narrow piece-to-piece variation. Catalyst monitoring methods have been reviewed and studied by checking the catalyst exotherm(1)(2). The preliminary test results of catalyst monitoring are also described herein.
Technical Paper

Thick Film ZrO2 NOx Sensor

1996-02-01
960334
This paper describes the design concept and evaluation test results of a multi-layered, thick film zirconia NOx sensor which can be used for lean-burn engine management. The oxygen concentration in the measuring gas is lowered to a predetermined level with an oxygen pumping cell, in the first stage. In the second stage, another pumping cell further lowers the oxygen concentration which results in simultaneous NOx decomposition. The second stage pumping current is proportional to the NOx concentration in the measuring gas.
Technical Paper

The Development of an Automotive Catalyst using a Thin Wall (4 mil/400cpsi) Substrate

1996-02-01
960557
Since the monolithic ceramic substrate was introduced for automotive catalytic converters, the reduction of the substrate wall thickness has been a continuing requirement to reduce pressure drop and improve catalytic performance. The thin wall substrate of 0.10 mm (4 mil) thick wall/400 cpsi cell density has been introduced to production by achieving mechanical strength equivalent to a conventional 0.15 mm (6 mil)/400 cpsi substrate. Although a round cross-section substrate can have a reduced catalyst volume compared to an oval cross-section substrate because of uniform gas flow distribution, the smaller cross-section of the round substrate increases pressure drop. The thin wall technology was applied to the round substrate to offset the pressure drop increase and to further improve catalytic performance.
Technical Paper

Thermal Reliability and Performance Improvement of Close-Coupled Catalytic Converter

1996-02-01
960565
This paper proposes a high temperature catalytic converter design using a ceramic substrate and intumescent matting. It also describes the improvement of converter performance using an advanced thin wall ceramic substrate. Due to future tightening of emission regulations and improvement of fuel economy, higher exhaust gas temperatures are suggested. Therefore, reduction of thermal reliability of an intumescent mat will be a concern because the catalytic converter will be exposed to high temperatures. For this reason, a new design converter has been developed using a dual cone structure for both the inlet and outlet cones. This minimizes heat conduction through the cone and decreases the temperature affecting the mat area. This design converter, without the use of a heat-shield, reduces the converter surface temperature to 441°C despite a catalyst bed temperature of 1050°C. The long term durability of the converter is demonstrated by the hot vibration test.
Technical Paper

Development of Wall-Flow Type Diesel Particulate Filter System with Efficient Reverse Pulse Air Regeneration

1995-02-01
950735
A wall-flow type diesel particulate filter system with reverse pulse air developed for vehicles should have the best regeneration performance possible with the least reverse pulse air as possible. We improved the reverse pulse air arrangement to decrease the air consumption and raise regeneration performance. Then, we developed diesel particulate filter (DPF) materials for the pore structure suitable for regeneration. Test equipment was designed to consume less air than a previous prototype system presented in our SAE paper [1]. The experiments used a soot generator simulating a diesel engine and a diesel engine. We confirmed that a wall-flow type DPF could possibly be applied to a regeneration system with the low air consumption for mounting on vehicles.
Technical Paper

A Structurally Durable EHC for the Exhaust Manifold

1994-03-01
940466
It is well known that an EHC (Electrically Heated Catalyst) is very effective in reducing cold start HC emissions. However, the large electric power consumption of the EHC is a major technical issue. When installed in the exhaust manifold, the EHC can take advantage of exhaust heat to warm up faster, resulting in a reduced electric power demand. Therefore, a structurally durable EHC which can withstand the severe manifold conditions is desirable. Through the use of a extruded monolithic metal substrate, with a flexible hexagonal cell structure and a special canning method, we have succeeded in developing a structurally durable EHC. This new EHC installed in the exhaust manifold with a light-off catalyst directly behind it demonstrated a drastic reduction in FTP (Federal Test Procedure) Total HC emissions.
Technical Paper

Development of Wall-Flow Type Diesel Particulate Filter System with Reverse Pulse Air Regeneration

1994-03-01
940237
The effects of the factors of reverse pulse air regeneration; pulse air pressure, pulse air time and pulse air interval, were evaluated. Pulse air pressure significantly affects a DPF's pressure drop increase. Pulse air time and pulse air interval do not greatly affect a DPF's pressure drop. Current DPFs and samples with modified materials were tested. The pressure drop increse varied with the material properties, such as mean pore size and porosity. Current DPFs are applicable to a DPF system with reverse pulse air regeneration. There is the possibility to get an optimum DPF for the reverse pulse air regeneration system by changing the mean pore size, porosity and/or other properties.
X